Version 11 (modified by seskar, 5 years ago) (diff)


USRP2 configuration and data collection with OEDL script

Table of Contents

  1. SDR Tutorials
    1. Working with USRP2 - Universal Software Radio Peripheral
      1. Description
      2. Hardware / Software Resources utilized
      3. Set up
      4. Usage
      5. Capture waveform and record to file & add time-domain plot of waveform
      6. Troubleshooting
    1. Simple radio example with GNURADIO benchmark scripts
      1. Description
      2. Hardware / Software Resources utilized
      3. Set up
      4. Running GNU Radio benchmark scripts
      5. Outputs from transmitter and receiver
      6. Troubleshooting
    1. Simple radio example with GNURADIO benchmark scripts (OEDL)
      1. Description
      2. Hardware / Software Resources utilized
      3. Set up
      4. Running OEDL script and viewing results
      5. OEDL script
    1. OFDM radio example with GNURADIO benchmark scripts
      1. Description
      2. Hardware / Software Resources utilized
      3. Set up
      4. Running OEDL script
    1. Spectrum sensing with USRP2 and wiserd
      1. Description
      2. Hardware / Software Resources utilized
      3. Set up
      4. Generate signal source file using octave
      5. Set up transmitting node
      6. Set up receiving node(s)
    1. USRP2 configuration and data collection with OEDL script
      1. Description
    2. Hardware / Software Resources utilized
      1. Set up
      2. Execute script and view recorded data
    1. Transmitting wideband signals using USRP X310 and wiserd
      1. Description
      2. Transmitting a signal using wiserd
      3. Creating the signal
    1. Running DSC match script from the grid console
    1. Working with GNURadio and Nutaq ZeptoSDR
      1. Description
      2. Set up
      3. Run the GRC scripts
    1. Realtek 2832 EZCap - A Frugal SDR
      1. Prereqs
      2. A cheap spectrum analyzer
    1. MacSwitch (Obsolete)
      1. Prerequisites
      2. Start Mac Switch
    1. Zynq-based WISER platform - Start-up test
      1. Description
      2. Hardware / Software Resources utilized
      3. Set up
      4. Loading the Zedboard
      5. Running a start up test
    1. Zynq-based WISER platform - Spectrum Sensing
      1. Description
      2. Hardware / Software Resources utilized
      3. Set up
      4. Start spectrum sensing
    1. Zynq-based WISER platform - Spectrum sensing with multiple nodes (OEDL)
      1. Description
      2. Hardware / Software Resources utilized
      3. Spectrum sensing with an OEDL script
    1. Zynq-based WISER platform - Building the Firmware
      1. Description
      2. Getting the FPGA source code
      3. Building the FPGA design
      4. Building ARM core software
    1. Nutaq - PicoSDR start-up and configuration
      1. Description
      2. Set up
      3. Launch demo scripts
    1. Multi channel sample collection with x310
      1. Description
      2. Set up
      3. Collect samples
    1. Getting started with RFNoC X310
      1. Description
      2. Set up
      3. Find USRP X310s
      4. Program the FPGA
    1. Multi Channel Sample Processing & Visualization
      1. Hardware / software resources utilized
      2. Receive multi channel signal for processing and plotting
      3. Transmit a signal using a single usrp
    2. Plot the IQ Constellation of received signal
      1. Multi-channel Uhd STreamer (MUST)
      2. Description
      3. How it works (without going into the source-code :-D
      4. Source code & compilation
      5. Hardware interface application
      6. XML file
      7. Command server
      8. Usage Example
      9. Signal handler applications
      10. Tutorials
    1. Using two RFNoC streams simultaneously on a single USRP device
      1. Description
      2. Set Up
      3. Running the Simulation
    1. Using 2 transmit or 2 receive antennas simultaneously
      1. Description
      2. Set Up
      3. Running the Experiment
    1. Generate random transmissions emulating Primary Transmitters
      1. Description
      2. Set Up
      3. Running the Experiment
    1. RFNoC Spectrum Sensing
      1. Description
      2. Set Up
        1. Prepare Receive Node
        2. Prepare Receive USRPs
        3. Prepare Transmit Node
        4. Prepare Transmit USRP
        5. Set up SSH tunnel from your local port 5100 to
        6. Set up a web proxy for the receive node
      3. Run the experiment
    1. Full-Duplex Wireless using USRP N210
      1. Description
        1. Technical Report
        2. Updates
      2. Hardware / Software Resources Utilized
      3. Set Up
      4. Run the Experiments
      5. Example Experiment 1: A Real-Time Full-Duplex Radio with OFDM PHY (GNU …
      6. Example Experiment 2: A Simple Full-Duplex Radio Experiment (Terminal …
        1. In Terminal 1
          1. In Terminal 2 (SUB-20)
        2. A Secondary Transmitter Using Node13-8
        3. Acknowledgements


In this tutorial we'll demonstrate exactly what the title says.

Hardware / Software Resources utilized

  1. 3 grid nodes with a USRP2 connect via Ethernet.
  2. ubuntu-12-04-uhd-daemon.ndz: node image with all the pre-compiled software required to configure the USRPs.
  3. uhd_exp1.rb - OEDL script executed on the console. This script configures the USRPs for data collection at specified frequencies, sampling rate, etc...
  4. uhd_daemon - a node background process that bridges the gap between OMF commands and USRP2.

Set up

  • Let's pick 3 nodes with a USRP2. For a current list of nodes with USRPs, go to the Orbit Scheduler, click on Status Page under Quick Links. Select the Grid Tab and filter by SDR and USRP_N210 or SBX. This will give a topology list of nodes (below) that can be used with the OMF commands:
  • After logging into grid console, make sure all nodes are turned off
    nilanjan@console.grid:~$ omf tell -a offh -t,,,
  • Verify state of node before continuing. Make sure all nodes are in the POWEROFF state.
    nilanjan@console.grid:~$ omf stat -t,,,
  • Image nodes
    nilanjan@console.grid:~$ omf load -i ubuntu-12-04-uhd-daemon.ndz -r 20 -t,,,
  • After nodes are imaged, verify that nodes are in POWEROFF state. Otherwise issue the following to turn them off for a reboot
    nilanjan@console.grid:~$ omf tell -a offh -t,,,
  • Turn nodes back on and verify they are in POWERON state
    nilanjan@console.grid:~$ omf tell -a on -t,,,
  • Download the OEDL experiment script uhd_exp1.rb to your local directory on the console. Executing this script will command one USRP2 to transmit a carrier frequency at random frequency offsets while commanding the others to continually take FFT snapshots and record the measurements to an database file. The contents of the uhd file is shown with additional comments:
    nilanjan@console.grid:~/UHD$ cat uhd_exp1.rb
    defProperty('freq',  1500e6, "Starting rx frequency")
    defProperty('dwell', 3, "Number of seconds at each frequency step")
    defGroup('txnode', '') { |n|
    defGroup('rxnode', ',') { |n|
    onEvent(:ALL_UP) do |event|
      info "Give machines some time to warm up" 
      wait 4
      info "activate"
      allGroups.uhd.u0.activate                         # starts UHD daemon
      wait 3
      info "set tx parameters"
      group("txnode").uhd.u0.txfreq = property.freq     # set tx frequency (Hz)
      group("txnode").uhd.u0.txrate = "8e6"             # set tx sampling rate
      group("txnode").uhd.u0.txgain = "30"              # set tx gain (dB)
      group("txnode").uhd.u0.txampl = "0.7"             # set tx wavform amplitude
      #group("txnode").uhd.u0.txwavefreq = "1e6"
      group("txnode").uhd.u0.txwavetype = "CONST"       # set type of waveform to transmit = {CONST, SINE, RAMP}
      group("txnode").uhd.u0.transmit                   # start transmitting
      group("rxnode").uhd.u0.rxfreq = property.freq     # set rx frequency
      group("rxnode").uhd.u0.rxrate = "8e6"             # set rx sampling rate
      group("rxnode").uhd.u0.rxgain = "25"              # set rx gain
      group("rxnode").uhd.u0.numbins = "128"            # number of fft points
      group("rxnode").uhd.u0.avgwinlen = "32"           # set averaging window size for each fft bin across time.
      group("rxnode").uhd.u0.omlfile = "spectrum.grid"  # oml database file name to store fft data
      group("rxnode").uhd.u0.omlserver = "idb2:3003"    # oml server
      group("rxnode").uhd.u0.record                     # start recording
      (0..30).each { |i|                                # set up loop    
        offset = (rand()*4).to_f                        # find next transmit frequency
        cf = property.freq + (offset*1e6)
        group("txnode").uhd.u0.txfreq = cf              # set new transmit frequency
        wait property.dwell                             # wait for a few seconds
      allGroups.uhd.u0.stop                             # stop transmitting and stop recording
      allGroups.uhd.u0.deactivate                       # stop UHD daemon
      info "Finish it." 

Execute script and view recorded data

  • To run the experiment script:
    nilanjan@console.grid:~/UHD$ omf exec uhd_exp1.rb
  • Once the script finishes, check the contents of the database file. The data should be recorded in spectrum.grid.sq3 on the oml server idb2.
    nilanjan@console.grid:~/UHD$ ssh idb2
    nilanjan@idb2:~$ cd /var/lib/oml2
    nilanjan@idb2:/var/lib/oml2$ ls -l spectrum.grid.sq3
    -rw-r--r-- 1 oml2 oml2 753561600 May 14 10:41 spectrum.grid.sq3
  • Dump the contents of spectrum.grid.sq3 to have a quick look inside the sql file.
    nilanjan@idb2:/var/lib/oml2$ sqlite3 spectrum.grid.sq3 ".dump"
    PRAGMA foreign_keys=OFF;
    INSERT INTO "_senders" VALUES('node20-20',1);
    INSERT INTO "_senders" VALUES('node1-1',2);
    CREATE TABLE _experiment_metadata (key TEXT PRIMARY KEY, value TEXT);
    INSERT INTO "_experiment_metadata" VALUES('start_time','1369071050');
    CREATE TABLE "spectrum_data" (oml_sender_id INTEGER, oml_seq INTEGER, oml_ts_client REAL, oml_ts_server REAL, "samplin
    g" INTEGER, "cfreq_MHz" REAL, "gain_dB" INTEGER, "FFTLength" INTEGER, "FFTNum" TEXT, "FFTBins" BLOB);
    INSERT INTO "spectrum_data" VALUES(1,1,0.534819999709725,211.009485,7692307,1500000000.0,25,128,'---',X'84B7C43E2146863DC912F53CC851933CF23EA93CCEC6AC3CEFF5EE3C7578D83CE054723C8C1D873C9F57F73C72CD1F3DF7C1BD3C7D75CC3CD972FA3C1A5B053DB973133DA6541E3D5ED0563DD8F0563DFA9E4B3D256B883DF368B03D02F2B43D77C1F53D403B2F3E2654A23E021EE33F690FFB3E7C7A613E7F6B093E49EFC93DA880AA3D78298B3DC5E1663D98FC483DCECC203D7755253D2BD7FE3CA74AEB3C5C8AF03C8453EE3C5F05D73CD289B63C4F51BD3C71A3BE3C5927983C2E6B8E3C6EFE753C19A3853CADAF7E3CBD118D3CFE1A963C99776F3CCC9E7F3CB610853CFE5A593C10E36B3C7365733C5EAC503CFA39353CA4CA763CC498213C44A11A3C07F1243CAEE5473CA26A483C6C603D3CFE6A483C6A9C113C9DCD0C3C1481413C3274C63B8B6A3F3C2701E33B506B6F3C3C9DDC3B05131B3CC50E1B3CB49D723C446E023C224B713C6E0FF33BFE68FD3B63FC0E3C3E33C43B9F8B973CB3A6733A992C813C76474E3C2DA1FC3A6DA70A3CCC66103CAA0A013C14874C3C24C4913AA335383C8472993CAA53BD3BEA0CA43B0846CB3CEBAF3B3CC2F1463C1AC0963CDD26553BF2C79C3A040E983CF4C8713C16F0AC3CF198233C98AA3B3C4E6D8D3C7CFEA13C7193723C317DFF3BA24DF93B17851D3CB140BE3C76979C3C31F39A3C41D05A3B56C5873C6D537F3C1540963CACF4F13CFB52DE3C6630093D5304343D');
  • The magnitude value of the fft bins are stored in binary format. The first entry of the db file is shown above. So when dumping the file contents the fft bins data is shown as consecutive ASCII representation of the binary floating point numbers. The 1st is 84B7C43E <==> 0.38421, the 2nd bin is 2146863D <==> 0.065563, etc...
  • To quickly visualize the fft data we can download and compile the following code (it's also in the attachment).
    nilanjan@console.grid:~/UHD$ wget
    nilanjan@console.grid:~/UHD$ gcc sq3_parse.cpp -o sq3_parse -lsqlite3
    nilanjan@console.grid:~/UHD$ ./sq3_parse spectrum.grid.sq3 > db_dump.dat
  • Parse the database file, load octave for a quick plot.
    nilanjan@console.grid:~/UHD$ ./sq3_parse spectrum.grid.sq3 > db_dump.dat
    nilanjan@console.grid:~/UHD$ octave
    octave:1> w = dlmread('db_dump.dat',',');
    octave:2> a = w(:,[9:136]);
    octave:3> imagesc([1:size(a,2)] , [1:size(a,1)] , 10*log(sqrt(a)/1000));
    octave:4> colorbar()

Attachments (6)

Download all attachments as: .zip