= 5G/NextG = Team: Jeff Acevedo | Ryan Lin | Sreeram Mandava | Nikhil Sampath | Sanskar Shah | Steve Shin | Xoua Thao == Project Objectives This project aims to implement and test many of the goals set by the O-RAN alliance. The O-RAN alliance works toward forming a more disaggregated and resilient architecture for Radio Access Networks (RAN). The project is divided into two sub-projects, the first regarding applications in the Service Management and Orchestration Framework (SMO) and the second regarding Radio System Implementation. === Weekly Slides Week 1: https://docs.google.com/presentation/d/12tB8qu7PKzh8Vf91PTPGVp_zUQDTg3FHjTDCSrbz3OU/edit?usp=sharing Week 2: https://docs.google.com/presentation/d/1BG-Ic3cOMBmDDZqHKv0XwhQrPxmHiZBA1T47vDEJ4ic/edit?usp=sharing Week 3: https://docs.google.com/presentation/d/1ki9sL52asnUo6WTF8jv6MEudg8ONSFogNYiSJHvBZ4U/edit?usp=sharing Week 4: https://docs.google.com/presentation/d/1G3B79Km7aUUF_xqcfx2OCIzeoE0pBuLZj6MlBGVAii8/edit?usp=sharing == Radio System Implementation == === Amarisoft === !OpenAirInterface == SMO Applications === Security rApp The Security rApp aims to provide closed-loop control in the SMO. This means that the network would be automatically configured based on changes. The rApp reads information from a Kafkabus regarding information about threats to the system. The existing code makes a graph out of the topology information contained in a JSON file. The program then receives and parses alarms and responds accordingly. In the event of a compromised part, the rApp quarantines the node and updates the access status of the node within the graph object. [[Image(image.png)]] === !Topology/Resilience rApp One method of increasing the resilience and efficiency of a RAN system is to have a single UE device connected to two RAN networks. The individual networks are managed by their own SMOs, which are in turn managed by a master SMO. Using the two networks, the data transfer can be optimized for speed and efficiency. Additionally, if one of the networks were to be compromised, connectivity can be maintained through the other network. A drawing of the system is shown below. [[Image(ORAN_Topology (1).jpg)]] The Resilience rApp in the master SMO can interact with the Resilience rApps in the two networks in order to learn about the topology and the state of the two networks. The master SMO can handle optimization and maintain constant connectivity for the UE. Topology information in the code can be tagged with attributes including cost, availability, performance, and security. This information can be used for optimization purposes.