
Role-Based Access Control on the Web Using JavaTM

Luigi Giuri
Fondazione Ugo Bordoni

Roma, Italy
e-mail: giuri @fub.it

Abstract

This paper describes a new extension of the security
features provided by the Java platform. This extension
provides complex role-based access control mechanisms
that take advantage of a new Java security service designed
to enforce access controls based on who runs the code.

This extension will be utilized to define a new
architecture that allows the design and implementation of
role-based security policies for Web applications. using
server-side Java technologies.

1 Introduction

Today, applications designed to run on the World Wide
Web are becoming very important since they are very easy
to deploy and they provide a common and familiar interface
to the end user. Moreover, the huge popularity of the
Internet is forcing companies to provide Web-based
services to their customers. Due to this success, many
technologies are competing to become leader in this field,
and they are also becoming important for the development
of enterprise applications based on Internet technologies
(i.e. intranets).

On the other side, security problems that arises in this
kind of situations are very serious, and security policies that
must be enforced can be very complex. To give an
acceptable solution to this problem, research and system
vendors in the computer security area are considering role-
based access control (RBAC) as a key security technology.
This is probably the most interesting and promising
technology recently proposed for design and
implementation of modern system security policies. It is

f’wmission to make digital or hard copies of all or part of this work for
PerSOfld or Ck3SSrOOm use is granted without fee provided that
copies are not made or distributed for profit or commercial advan-

tage and that copies bear this notice and the full citation on the first page
TO COPY otherwise, to republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee.

RBAC ‘99 1 O/99 Fairfax, VA, USA
0 1999 ACM l-58113-180-1/99/0010...$5.00

based on the common practice in organizations of assigning
duties and responsibilities to the employees on the basis of
their role within the organization itself. In this way the
computer system security policy resembles the corporate
security policy and all the other higher-level security
policies on which it depends. The result is an increase in
security comprehensibility and manageability for the entire
organization, that is, an improvement of the global degree
of security.

In the last few years, researchers and vendors have
proposed many enhancements of RBAC models, and RBAC
implementations are currently available. The fundamentals
of RBAC policies have been clearly identified [SAN96],
and many RBAC models have been proposed to satisfy
security requirements in different information technology
domains. For example, different RBAC models have been
developed for object-oriented databases [BER94],
collaborative and workflow systems [JAE95, BER97], etc.
Moreover, RBAC has been included in the forthcoming
ISO/SQL standard [GIU98a, SQL99].

The focus of this paper is on the Java platform and its
extension for the support of Web-based server-side
applications, i.e. Java Servlet. Within the Java platform,
security has been considered as a key issue since the
beginning of the project. Since Java programs can virtually
run on every hardware/OS platform and can be
automatically downloaded and executed from the Internet,
they can be the source of serious security problems. A lot
of work has been done in this field (for example, see
[MAR97], [MCG97], [MEH98]). As far as access control is
regarded, there are interesting works about the definition of
an extensible security architecture [WAL97], the
implementation of a secure multi-processing virtual
machine [BAL97], and the stack inspection algorithm
[WAL98]. An analysis of the security features provided by
the Java platform in order to identify how it is possible to
improve them using role-based access control mechanisms
has been provided [GIU98b].
Java is a trademark of Sun Microsystems, Inc. All other product names
mentioned herein are the trademarks of their respective owners.

11

: c.class ._ * -..Y
;

i
b,,-lass .-:-‘:..es; i

classes in
the runtime

Figure 1. Protection domains in JDK 1.2.

The topic of this paper is the definition of a new Java
RBAC extension that take advantage of a recently proposed
Java security service designed to enforce access controls
based on who runs the code, and its application to the
design and implementation of security policies for Web
applications.

The remainder of the paper is organized as follows. In
Section 2 we provide the basic concepts of the security
model implemented by the Java platform. Section 3
presents a new Java RBAC model that provides a role
hierarchy and constraints. Section 4 shows how the new
model can be used to implement RBAC policies for Java-
based Web applications. Finally, Section 5 provides
conclusions and suggestions for future work.

2 Java Security

2.1 JDK Security

The Java Development Kit (JDK) 1.2 provide a security
model based on the concept of protection domain [GON98].

In JDK 1.2, a protection domain is a set of permissions
that is associated with every program that comes from a
particular origin and is signed with a specified set of public
keys. The origin of a program is specified through a URL
location, and the association between the origin and the set
of public keys is called CodeSource (and represented by
the corresponding class). In brief, the protection domain
represents a customized sandbox associated with every Java
program that belongs to a particular CodeSource (figure 1).

The model requires the Java runtime to provide a policy,
that is a set of rules that permits one to calculate the set of
permissions associated to a given CodeSource. A policy is
implemented by subclassing the j ava . security . POI icy

abstract class. In particular, the evaluate method must be
implemented to return a Permissions object for a given
CodeSource. The JDK 1.2 provides a default policy through
the PolicyFile class, but everyone can provide his or her
own policy. The PolicyFile default policy provides a way
to specify a policy using a set of policy entries. A policy
entry grants a set of permissions to a specified CodeSource

using the following syntax:

grant [SignedBy U signer-name"]
[, CodeBase M URL"]

1
Permissionl;
. . .
PermissionN;

1;

Moreover, since a URL can be used to specify, for
example, a directory or an entire host, then a single policy
entry can represent the assignment of permissions to
multiple CodeSourceS.

Note that the new security model does not make any
distinction between local programs and remote programs,
applying them the same policy. That is, an origin URL can
refer to both local and remote origins.

The rest of this section will introduce some details of the
JDK 1.2 security model and API that will be useful in this
paper. For a complete description of the JDK 1.2 security
model, see [GON98].

Within the java .security package, the permission

abstract class defines the basic features required for
permissions, i.e. every actual permission class will be
derived from this class. It represents the authorization to
access a particular system resource or to execute a
particular operation;

12

For example, the FilePermission class is used to allow
a Java program to access files and directories, and the
corresponding FilePermissionCollection class is used to
hold FilePermission objects.

An interesting feature of the JDK 1.2 is that it is
possible to add new permission classes (eventually with the
corresponding permission collection classes) in order to
define application specific security policies. To do so, it is
only necessary to define the new classes as subclasses of the
corresponding base classes, i.e. by correctly implementing
the required methods.

Finally, to check if a permission is authorized at
runtime, JDK 1.2 provides the new AccessController

class. Within this class, The CheckPermission static
method determines whether the access request indicated by
a specified permission should be granted or denied.

2.2 Java Authentication and Authorization Service

The JDK 1.2 security model enforces access controls
based on where code came from and who signed it. To
enforce similar access controls based on who runs the code,
the JDK 1.2 requires additional support for user
authentication, and requires extensions to the existing
authorization components to enforce new access controls
based on who was authenticated.

The Java Authentication and Authorization Service
(JAAS) [JAA99] framework has been designed to augment
the JDK with such support.

First of all, the JAAS framework provides the Subject

class to represent the source of a request. A subject may be
any entity, such as a person or service. Once authenticated,
a subject is populated with associated identities, or
principals, represented as instances of the Principal
interface. A subject may have many principals. For
example, a subject could have a principal that represents a
user name, and another principal that represents a driver
license.

To allow the implementation of different kinds of
authentication technology, the JAAS framework requires
applications to implement the LoginModule interface. For
example, one particular LoginModule might verify a
username and password, while another may interface to
hardware devices such as smart cards or biometric devices.

Once a subject has been authenticated, access controls
can be placed on it, based on the principals associated with
that subject. The JAAS Policy class defines a means to
grant permissions to principals. A sample implementation
of a policy ftle (very similar to the JDK 1.2 policy file) is
provided.

Finally, to check if a permission is authorized at
runtime, the JAAS provides the SecurityManager class.
Within this class, the checkSubjectPermission method
performs subject-based access control checks.

3 The JRBAC-99 policy

3.1 Basic rules

In this section we provide a set of rules that specify
what we call JRBAC-99 policy. First of all, we provide the
rules that specify the concepts of user, role and role
hierarchy:

. a user is a principal;

. a user is uniquely identified by a name;

. a role is a principal;

. a roIe is uniquely identified by a name;

. roles are organized into a (acyclic) usage hierarchy
where permissions are inherited from junior to senior
roles;

. roles can be assigned to users.

Since a role is a principal, permissions can be granted to
a role. The set of permissions included by a role r is the set
of permissions directly granted to r plus the set of
permissions inherited by T.

A user is also a principal, so permissions can be granted
to a user. Note that, within the JAAS framework, a subject
can have many associated principals, so the following rule
must be satisfied:

. a subject has at most one user principal.

Moreover, the following rule specifies how a user
principal is associated to a subject:

. a user principal is associated to a subject through a login
procedure.

The user principal in the JRBAC-99 framework has
been introduced as a placeholder that allows the assignment
of roles to real-world users. Implementations of the
JRBAC-99 framework could allow security administrators
to assign roles to other kinds of principals. This does not
conflict with the last rule, since we only want to avoid that a
subject acquires privileges that belong to different external
entities, and it is possible that an entity has many associated
principals. Anyway, the specification of such extension is
out of the scope of this paper.

To honor the role semantics, at a given time, every
permission included by a role is available to a subject
protection domain if the role is enabled (or activated) in
that protection domain. We provide the following general
rule regarding role activation:

. the set of permissions available to a given subject
protection domain is the set of permissions assigned to

13

EL UserPrincipal

PUA
UserPrincipal

4 b)

Figure 2. Basic JRBAC-99 policy.

the subject’s principals plus the set of permissions
included in its enabled roles;

. a role can be enabled in a subject protection domain
only if the role is directly assigned to the corresponding
user principal.

Note that we do not allow the activation of subroles of
directly assigned roles in order to provide a sort of
implementation hiding. However, this rule can be relaxed to
provide more flexibility, thus allowing the activation of
subroles of directly assigned roles.

Last rule is not sufficient to completely specify role
activation, since it is necessary to take into account dynamic
constraints (see next section).

Finally, it is necessary to specify which roles are
activated when a user principal is associated to a subject
(i.e., at login time). Four distinct possibilities are available:

. no roles are activated;

. all directly assigned roles are activated;

. a set of default roles are activated;

. a set of roles provided at login time are activated.

Practically, all the above rules provide the basis for a
straightforward implementation as shown in figure 2. Two
new Principal implementations are defined:
UserPrincipal e RolePrincipal. The perIIliSSiOn-role-

assignment (PRA) and permission-user-assignment (WA)
relationships are directly implemented using the JAAS
Policy. To implement the role-role-assignment (RRA) and
the user-role-assignment (URA) relationships it is necessary
to provide a new RolePolicy class. For example, a
RolePolicy implementation could use a file (named role

policy @file) where the above relationships are represented
with a syntax that is similar to the JAAS policy file syntax,
that is:

grant [role "role-name" 1 user ‘user-name’1
I

role "role-namel" [default];
. I .
role "role-nameN" [default];

3;

The RolePolicy class parses the role policy file and
checks that there are no cycles in the RRA relationship.

To manage role activation, the RoleController class
provides the following methods:

. reset t) : disables every role;

. resetDefaults () : disables every role and enables
default roles only:

. enableRole(String roleName): adds the role
identified by roleName to the set of enabled roles;

. enabledRoles () : retrieves the set of currently enabled
roles.

Particularly, to implement permission inheritance, the
enableRole method adds the enabled role and ail its
subroles to the set of subject’s principals.

Finally, to associate a user principal to the subject, it is
necessary to provide an implementation of the JAAS
LoginModule interface that, after a successful
authentication, add the corresponding user principal and
role principals to the set of subject’s principals. Practically,
it is possible to define a RoleLoginModule abstract class
that provides implementation of the part that associates
authenticated principals with the subject, leaving the

14

MutexConstraint

ActivationConstraint

*check () : boolean

StaticMutexConstraint DynamicMutexConstraint

TimeConstraint DateConstraint

I
CardinalityConstraint

I

I -

Figure 3. JRBAC-99 constraints.

authentication part unspecified. Later in this paper, the time is within a specified interval. To specify activation
implementation of a RoleLoginModule that uses HTTP constraints, the role policy file must be extended to accept
authentication will be described. the following syntax:

3.2 Constraints

The JRBAC-99 model allows the specification of
constraints on users and roles. Two main categories of
constraints can be identified:

grant [role “role-name” 1 user 'user-name']
(

role "role-namel" [default]
constraint ConstraintClass "pa-l"

. . .
role "role-nameN" [default];

1;
. static constraints, that must be satisfied by the role

policy;
role "role-name"

l dynamic constraints, that limit the possible role
activation configurations at runtime.

constraint ConstraintClass "pa-l"

user "user-name"
constraint ConstraintClass "parl"

Figure 3 provides a schema of the actual constraint
classes available.

An activation constraint is a dynamic constraint
represented by a boolean condition associated to either a
node or an edge of the role hierarchy, with the following
semantics:

. a node constraint must evaluate to true in order to
permit the activation of the associated node. A node
constraint is associated to a user or to a role;

. an edge constraint must evaluate to true in order to
permit the activation of the associated junior role as a
child of the associated senior node. An edge constraint
is associated to a URA or RRA instance.

Note that this kind of activation constraints are different
from those presented in [GIU98b] (named
RoleConstraint) because ActivationConstraintS We

defined on principals, while RoleConstraintS are defined
on permissions. Thus, while the latter permit the
specification of high granular constraints on single
permissions, the former allow the specification of
constraints on users and does not require modification of
the standard JAAS policy. Moreover, the specification of a
constraint on a single permission using
ActivationConstraintS can be obtained by defining a
specific role for the considered permission and placing the
constraint on that role.

A formal specification of a superset of this model can be
found in [GIW96]. In this proposal we implement activation
constraints using the ActivationConstraint interface that
must be implemented by actual constraint classes. For
example, the TimeConstraint class checks if the current

Separation of duty constraints identifies set of roles that
cannot be combined together. They are specified using the
MutexConstraint class. As usual, a
StaticMutexConstraint identifies roles that cannot be
combined together within the role policy, while a
DynamicMutexConstraint identifies roles that cannot be

1.5

combined together at run time. We also provide the
possibility to specify that a MutexConstraint should be
applied only to specific users.

To specify separation of duty constraints, the role policy
file must be extended to accept the following syntax:

[static 1 dynamic] mutex

role "role-namel";
. . .
role "role-nameN";

[user "user-namel";
- . .
user "user-namel"; 1

I;

Finally, a (static) role cardinality constraint can be
associated to a role to specify the maximum number of
users that can use (either directly or indirectly through role
inheritance) that role. These constraints can be specified
within the policy file using:

role "role-name"
cardinality N;

Note that the implementation of static constraints is
given by the RolePolicy class. In our example, the
RolePolicy implementation must check that the role policy
file is consistent with respect to the static constraints it
specifies. Conversely, dynamic constraints are implemented
by the RoleController class, particularly by the
enableRole () method that must check that the situation
after a role activation satisfies the set of dynamic
constraints provided by the role policy.

4 The JRBAC-WEB architecture

JRBAC-WEB is a new architecture that provides RBAC
on the World Wide Web using server-side Java
technologies. Particularly, it is based on the Java Servlet
standard Java extension. Briefly, a Java servlet is a module
that extends request/response-oriented servers, such as
Java-enabled Web servers. For example, a servlet might be
responsible for taking data in an HTML order-entry form
and applying the business logic used to update a company’s
order database. For more information on this topic, see
[SER99].

At the heart of the JRBAC-WEB there are two servlets.
The first, named SecureHttpServlet, uses HTTP
authentication to perform a complete user login and to set
the security characteristics for the execution of the user
request. The second, named SecureSessionHttpServlet,

provides the services of the previous servlet plus the
capability to manage a secure session across many HTTP
requests.

First of all, we add new Permission subclass, named
ServletPermission, that represents a new permission used
to guard the execution of HTTP requests through a secure
servlet, i.e. it provides means to control access to secure
servlets’ services. This permission contains a name
(generally referred to as a target name), that represents the
complete name of the servlet, and an action which can be
one of the following:

GET
HEAD
POST
PUT
DELETE
OPTIONS
TRACE
*

i.e., actions represent HTTP methods and * represents any
method.

SecureHttpServlet is an abstract class that is actually a
wrapper of the standard HttpServlet class of the Java
Servlet framework. To force the execution of application
code within a secured environment, this class provides a
final implementation of the service method (figure 4).
Since this method is called every time an external request is
made to the servlet, to set the secure environment it is
sufficient to perform a login operation. Then, a permission
check {using an appropriate ServletPermission instance)
is made before executing the standard servlet code for the
requested services.

Particularly, the login method uses a special
RoleLoginModule, named HttpLoginModule, that does not
perform any special authentication since it relies on HTTP
authentication, so it uses the HTTP-provided name of the
user making this request to perform a login and set the
subject characteristics. Since HTTP is not RBAC-aware,
the login procedure starts with an empty set of enabled
roles. Subsequently, application code can use the
RoleController to enable roles, possibly on a user-driven
basis (i.e., using data submitted by the user through HTTP).

The permission check simply consists in a check of the
ServletPermission associated to the requested HTTP
method.

Thus, to create an application-specific secure servlet it is
sufficient to define that servlet as a subclass of
SecureHttpServlet insteadofthestandard HttpServlet.

Unlike the approach of [FER99], we neither associate a
subject to a user, nor we maintain information on enabled
roles on the server. Our approach tends to preserve the basic
semantics of underlying technologies, so we do not
maintain security state information for a stateless protocol.

However, complex web-based applications (like
electronic commerce systems), do require that some
information is used across multiple HTTP requests. To
support this kind of requirements, the Java Servlet API

16

public abstract class SecureHttpServlet
extends javax.servlet.http.HttpServlet

public final void service(HttpServletRequest request, HttpServletResponse response)
throws ServletException, IOException

I
login(request, response);
checkPermission(request, response);

super(request. response):
I

public abstract class SecureSessionHttpServlet
extends javax.servlet.http.HttpServlet

1
public final void service(HttpServletRequest request, HttpServletResponse response)

throws ServletException, IOException
I

sessionLogin(request, response);
checkPermission(request, response);

super(request, response);

setSessionRoles(request, response);
1

. . .
1

Figure 4. JRBAC-WEB secure servlets.

provides the HttpSession class that permits to store data
whose life spawns multiple requests. Actually, session data
is stored into the client using cookies or an URL-rewriting
technique [SER99].

To support secure sessions, we provide the new
SecureSessionHttpServlet class. In this class, the method
setSessionRoles stores into the HttpSession the set of
enabled roles associated with the subject. The method
sessionLogin perform a login using the HTTP
authenticated user name and the roles stored into the
HttpSession (the first time it creates an empty session).
Thus, the service method combines the two previous
methods obtaining a complete security session management
(figure 4).

To achieve a higher level of security, session data could
be cryptographically signed by setSessionRoles and
verified by sessionbogin. Anyway, this is out of the scope
of this paper.

5 Conclusions and Future Works

Today, it is very important to have means that allow the
design and implementation of complex security policies for
Web-enabled applications. This paper shows that mature

technologies like Java and RBAC, combined on the server
side, have good chances to achieve a leadership position in
the information technology area.

Further work could be done in order to extend the
proposed framework, for example, to provide an extensible
constraint system. Another interesting topic is the
specification of an alternative framework that uses, instead
of the JAAS extension, the approach named security-
passing style [WAL99J, that could also be applied to
previous versions of the Java platform.

References

[BAL97] Balfanz D., Gong L., “Experience with Secure
Multi-Processing in Java”, Technical Report 560-97,
Department of Computer Science, frinceton University,
September, 1997.

[BER94] Bertino E., Origgi F., Samarati P., “A New
Authorization Model for Object-Oriented Databases”, in
Proceedings of the IFIP WG 11.3 Eight Annual Working
Conference on Database Security, August 1994.

17

[BER97] Bertino E., Ferrari E., Atluri V., “A Flexible
Model Supporting the Specification and Enforcement of
Role-based Authorizations in Workflow Management
Systems”, in Proceedings of Second ACM Workshop on
Role-Based Access Control, ACM Press, 1997.

[FER99 J Ferraiolo D. F., Barkley J. F., Kuhn D. R., “A
Role Based Access Control Model and Reference
Implementation within a Corporate Intranet”, ACM
Transactions on Information and System Security, Volume
2, Number 1, February 1999.

[GIU96] Giuri L., Iglio P., “A Formal Model For Role-
Based Access Control with Constraints”, in Proceedings of
9” IEEE Computer Security Foundation Workshop, County
Kerry, Ireland, June 10-12, 1996.

[GIU98a] Giuri L., “An extension of the SQL/3 security
model for a better support of role-based access control”,
Document ISO/IEC JTCl/SC21 WG3/DBL, n. CWB013,
ftp://jerry.ece.umassd.edu/isowg3/dbl/CWBdocs/cwbO

13.pdf.

[GIU98b] Giuri L., “Role-Based Access Control in Java”,
in Proceedings of Third ACM Workshop on Role-Based
Access Control, ACM Press, 1998.

[GON98] Gong L., “JavaTM Security Architecture (JDK
1.2)“, draft document (revision 0.8), Sun Microsystems
Inc., March 9, 1998.

[JAA99] Java Authentication and Authorization Service,
http://www.javasoft.com/security/jaas/.

CJAE951 Jaeger T., Prakash A., “Requirements of Role-
based Access Control for Collaborative Systems”, in
Proceedings of First ACM Workshop on Role-Based
Access Control, ACM Press, 1996

[MAR971 Martin D. M., Rajagopalan S., Rubin A. D.,
“Blocking Java Applets at the Firewall”, in Proceedings of
IEEE Symposium on Network and Distributed System
Security, IEEE Computer Society Press, 1997.

[MCG97] McGraw G., Felten W. F., Java Security:
Hostile Apple& Holes and Antidotes, Jon Wiley & Sons,
1997.

[MEH98] Mehta N., “Expanding and Extending the
Security Features of Java”, 7th USENIX Security
Symposium Proceedings, San Antonio (Texas), Jan 1998.

[SAN961 Sandhu R. S., Coyne E. J., Feinstein H.,
Youman C. E., “Role-Based Access Control Models”, ACM
Computer, Vol. 29, No. 2, February 1996.

[SER99] Java Servlet API, http://www.javasoft.com
/products/servlet/

[SQL991 Jim Melton (ed.), “IS0 Final Draft
International Standard (FDIS) Database Language SQL -
Part 2: Foundation (SQL/Foundation)“, ISO/IEC
JTCl/SC32 NO0223

[WAL97] Wallach D. S., Balfanz D., Dean D., Felten E.
W., “Extensible Security Architectures for Java”, in
Proceedings of 16” Symposium on Operating System
Principles, Saint-Malo, France, October 1997.

[WAL98] Wallach D. S., Felten E. W., “Understanding
Java Stack Inspection”, in Proceedings of 1998 IEEE
Symposium on Security and Privacy, Oakland, CA, May
1998.

[WAL99] Wallach D. S., “A New Approach to Mobile
Code Security”, Ph.D. dissertation, January 1999.

18

